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Metal matrix composites are gaining popularity for applications where high performance
materials are needed. Titanium matrix composites (TMCs) continuously reinforced by
silicon carbide fibres are under development for applications in aeroengines. Their use in
blades, rings and shafts promises a significant weight reduction and performance
improvement due to their high specific strength and stiffness. To obtain the whole
capabilities of the material not only advanced processing techniques but also
post-processing treatments are necessary. A detailed analysis of the residual stress
development during cyclic loading leads to the necessity of residual stress modifications to
optimise the fatigue behaviour of TMCs. Since the aerospace industry requires high
reliability of the materials used, models for predicting failure and life time are of special
interest. Predictive models based on the properties of the single constituents of the
composite are most suitable to reduce the number of experiments and to develop
methodologies to improve specific mechanical properties. Nevertheless, both experiments
on the single constituents as well as on the composite are necessary to validate the model.
A previously developed rheological model is used to assess different post-processing
procedures to improve the fatigue behaviour of a titanium matrix composite. The usage of
the model and experiments on the system SCS-6/Ti-6Al-2Sn-4Zr-2Mo are presented.
C© 2004 Kluwer Academic Publishers

Symbols and indices
Symbols
A Creep parameter
a, b Creep exponents
B, C Coffin-Manson parameter
E Young’s modulus
H Hardening modulus
N Cycles
n Ramberg-Osgood exponent
R Load ratio
T Temperature
t Time
v Volume content
α Coefficient of thermal expansion
ε Strain
ε′

f,m, σ ′
f,m Coffin-Manson parameter

� Difference
σ Stress
σ ′ Modified stress
σ1 Elastic limit
σ2 Maximum stress

Subscripts
a Amplitude
b Rupture
c Composite
cr Creep
el Elastic

f Fibre
IR Irreversible fraction
m Matrix
max Maximum
pl Plastic
Z Residual strain resp. stress in fibre direction

1. Introduction
Relative to unreinforced titanium alloys, continuously
silicon carbide fibre reinforced titanium matrix com-
posites (Ti-MMCs or TMCs) offer higher strength and
higher stiffness; furthermore, the reinforcement leads to
a decrease of the density. Therefore, TMCs are among
the most important candidate materials for high perfor-
mance components in aeroengines such as compres-
sor blades, vanes, shafts and rings [1–3]. All these
components are highly fatigue loaded, thus the fatigue
behaviour must be investigated and understood very
well.

Due to the mismatch of the coefficients of thermal ex-
pansion (CTE) between fibre and matrix material, ther-
mal residual stresses (TRS) are induced during cool-
ing from processing to ambient temperature [4, 5]. The
TRS leave the matrix in tension and thus support crack
nucleation and propagation in this constituent. On the
other hand the state of TRS may be altered by creep,
yield and temperature effects. Consequently the fatigue
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Figure 1 Wöhler-Curves of SCS-6/Timetal 834 and the unreinforced
matrix alloy for R = 0.1.

failure mechanism of TMCs is closely related to the
conditions and the load history the component is sub-
jected to.

Fig. 1 shows the Wöhler curves for a TMC compared
to the monolithic titanium alloy at room temperature
and 600◦C, respectively [6, 7]. The diagrams can be di-
vided in three regions. Region I represents the low cycle
fatigue (LCF) regime with a high stress level while re-
gion III is in the high cycle fatigue (HCF) regime with
low stress levels and a transition zone (region II) in-
between [8]. The classical fracture mechanics approach
for metals relates HCF to loading below and LCF above
yield limit [9]. This characterisation can certainly not
be applied to TMCs since the fibres cannot deform plas-
tic by itself and limit the total strain of the composite
and, furthermore, the composite behaviour is strongly
influenced by TRS [10–12].

To fully exploit the capabilities of TMCs, advanced
processing techniques are needed. Inhomogenities and
especially fibre-fibre contacts have to be avoided [10].
Therefore, the matrix coated fibre technique (MCF)
has been established as most suitable since it leads
to a fairly homogeneous fibre distribution without any
binder, interweaving or other contamination [3]. Since
the best coating quality can be achieved with the sput-
tering technique, all results presented in this paper are
obtained from MCF fabricated TMCs using magnetron
sputtering [4–6]. An overview of the complete process-
ing route is given in Fig. 2.

Figure 2 MCF-processing route for TMCs.

2. Loading-stress interaction
2.1. Influence of cyclic loading

on residual stresses
Under LCF conditions at room temperature the matrix
yields at the first cycle when the maximum stress is
reached. Thus the state of the initial TRS is changed
[13] by reducing the tensile stresses in the matrix and
the compressive stresses in the fibres, respectively. This
induces a load transfer from the matrix to the fibres.
Consequently the fibres may fail in a cycle dependent
manner although they are considered as fatigue resis-
tant in this region. Due to the low rupture strain of the
fibres and the ductility of the matrix a total failure of the
composite cannot be induced by matrix failure. How-
ever, the fibres can fail successively until the load can no
longer be sustained by the surrounding matrix. Curtin
[14] and Assler [15] showed that clusters of at least 3–5
broken fibres are necessary to induce total failure of the
composite. The small decrease of the Wöhler curve in
this region is indicative of good fatigue resistance of
the fibres.

Under HCF conditions at room temperature non
gross plastic deformation of the matrix occurs. Due
to TRS the matrix is in tension even in the unloaded
TMC. Consequently, low applied stresses lead to a ma-
trix stress which may be higher than the applied stress.
In other words, the TMC is weakened by the reinforce-
ment in this load case. The relatively low cyclic fatigue
strength of the titanium alloy leads to matrix cracking. If
the load is low enough to be carried by the fibres without
causing failure, the matrix cracks are bridged by intact
fibres [7]. Compared to LCF, the effectiveness of the
reinforcement (strength of composite/strength of unre-
inforced matrix) under HCF conditions at room temper-
ature is fairly low. Considering crack nucleation instead
of total failure is even more critical for the composite.

Compared to room temperature TRS at 600◦C are
reduced by about 80%. Thus, for LCF conditions at
600◦C, even at the first cycle, a higher fraction of stress
is carried by the fibres. Since the fibre strength is less
affected by temperature than the matrix strength, the
beneficial effect of fibre reinforcement is higher com-
pared to room temperature. At elevated temperatures
the creep behaviour of the matrix alloy leads to a time
and thus a frequency dependence. Similar to LCF at
room temperature the maximum matrix stress is mainly
independent of the applied stress; it is limited by the
yield stress of the matrix.

At 600◦C under HCF loading conditions the com-
posite behaviour is strongly influenced by the creep
behaviour of the matrix alloy. This means that under
cyclic loading the matrix mean stress decays to zero
at the applied cyclic mean stress of the composite. So
the cyclic loads are carried mainly by the fibres. On the
other hand, at cyclic minimum stress, the matrix can
be in compression [16] even if tension-tension loading
is applied. The very high fibre strength combined with
an almost unloaded matrix leads to an excellent fatigue
resistance of the TMC at high temperature.

Cyclic tension-compression loading (R < 0) differs
from the tension-tension loading in two ways. First of
all, irreversible deformations (creep and yielding) are
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Figure 3 Comparison of the fracture surfaces under tension-tension loading (left) and tension-compression loading (right).

reduced. Thus the reduction of TRS is slower and the
load distribution between fibres and matrix is more un-
favourable. The second aspect concerns the behaviour
in response to matrix cracks and thus especially the
HCF behaviour at room temperature. Once the cracks
are initiated, they open and close periodically. This
leads to friction in the fibre-matrix interface [17] and
shear stresses in the bridging fibres due to microscopic
mismatch of the cracks while closing, resulting in a
reduction of fibre strength and rapid failure of the
composite. This leads to an even more pronounced
loss in strength at room temperature under tension-
compression HCF loading compared to the same condi-
tions in the tension-tension mode [18]. Sometimes the
HCF strength of the composite is even below that of the
monolithic metal [19].

The phenomenon that matrix cracks initiate rapid
fibre failure can be demonstrated by analyses of the
fracture surfaces. Fig. 3 compares fracture surfaces of
specimens tested under tension-tension and tension-
compression loading, respectively. In the tension-
tension mode the opened matrix crack induces shear
failure of the fibre-matrix interface and thus fibre break-
age occurs at the weakest location within the debonded
length. A pronounced pull-out behaviour is the conse-
quence. Under tension-compression loading the same
debonding mechanisms occur. However, the fibres do
not fail at their weakest point within the debonded
length but are weakened by friction and shear forces
in the region of the matrix cracks. The fracture surfaces
of fibres and matrix are nearly in the same plane result-
ing in an apparent shorter debonded length. Even so it
can be assumed that the debonding mechanism is simi-
lar in both cases, since the mechanisms of load sharing
and fibre-matrix load transfer are depending on the ma-
terials properties and not on the loading conditions.

A further difference can be found in the ratio of the
areas of fatigue crack and final fracture. In the tension-
tension mode fatigue cracks in the matrix cover nearly
the whole cross section before fracture. Final failure oc-
curs mainly within the fibres. In contrast, in the tension-
compression mode the fatigue crack in the matrix in-

duces fibre failure and thus the final fracture occurs in
both fibre and matrix leading to a larger fraction of the
final failure surface. This is marked by a rough topog-
raphy and significant shear lips.

2.2. Influence of residual stress
modification on fatigue strength

The fatigue strength of TMCs is affected by residual
stresses at room temperature and low stress levels only.
This load case is marked by a very low effect of re-
inforcement. This phenomenon becomes more trans-
parent by an analytical description carried out by the
following steps:

1. For the example chosen the input properties are:

�T = −680 K, α f = 4 ppm/K, αm = 11 ppm/K,

Ef = 400 GPa, Em = 120 GPa, vf = 40%

2. Using

σm,z = �T · (αf − αm)
1
Ef

· 1−vf

vf
+ 1

Em

(1)

and

σf,z = −1 − vf

vf
· σm,z (2)

the state of TRS can be obtained as: σm,Z = 394 MPa
and σf,z = −591 MPa, respectively.

3. The corresponding strains are: εm,z = 0, 328%
and εf,z = −0.148%, respectively.

4. For instance, if a stress amplitude of σa = 550 MPa
is applied, which is of the order of the endurance limit
of the unreinforced matrix material, under assumption
of fully reversed loading σmax = −σmin = σa the
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maximum matrix stress is:

σm,max = Em ·
[
εm,z + σa

Ef · vf + Em · (1 − vf)

]

= 678 MPa (3)

On the other hand, the minimum matrix stress is:

σm,min = Em ·
[
εm,z − σa

Ef · vf + Em · (1 − vf)

]

= 109 MPa (4)

It is obvious, that the maximum matrix stress is sig-
nificantly above the endurance limit of the matrix as
well as the applied stress and thus the desired effect
of reinforcement is missing. Although the load ratio
R (σmin/σmax) is shifted to higher values by TRS the
impact on life time improvement by load ratio correc-
tion is lower than the life time reduction by the higher
maximum matrix stress.

5. The maximum stress in the fibres is:

σf,max = Ef ·
[
εf,z + σa

Ef · vf + Em · (1 − vf)

]

= 356 MPa (5)

while the minimum stress is:

σf,min = Ef ·
[
εf,z − σa

Ef · vf + Em · (1 − vf)

]

= −1540 MPa (6)

Thus the high strength fibres are loaded less than the
matrix and their contribution of sustaining tensile loads
is low. Otherwise, at minimum applied stress the fibres
are loaded under high compression, thus shifting the R
ratio of the fibres to lower values.

Under tension-tension loading matrix cracks may be
bridged by intact fibres. A total failure is delayed or
even avoided. Reversed loading leads to a more rapid
fibre failure due to friction and shearing within the re-
gion of matrix cracks as discussed in the section be-
fore. Thus the maximum stress at crack initiation and
the maximum stress at total failure are similar resulting
in a substantial lower endurance limit under reversed
loading compared to tension-tension loading.

Considering the influence of high tensile loads on
the TRS state, it can be seen that a well defined pre-
straining of the composite may reduce the TRS leading
to improved HCF strength. This way of improving the
fatigue strength of TMCs was proposed by [13] initially.
Based on the analytical description given above, the
influence of pre-straining can be analysed as follows:

6. Since a ductile matrix is required the composite
can be strained up to the rupture strain of the weakest
fibre reduced by the residual strain:

εc,max = εf,b − εf,z (7)

Under the assumption of εf,b = 0.75% (the nominal
rupture strain of SiC-fibres is 1%; under considera-

tion of the natural scatter and a safety margin 0.75%
is a conservative value) the allowed composite strain is
εc,max = 0.9%.

7. The fibres are ideal elastic and thus the fibre
stress is:

σf,0.9 = Ef · εv,max − σf,z = Ef · εf,b = 3000 MPa (8)

8. The matrix is considered as ideal elastoplastic
with a yield stress of σ1 = 1000 MPa. The elastic limit
is exceeded resulting in a plastic strain εm,pl of:

εm,pl = εc,max + εm,z − σ1

Em
= 0.395% (9)

9. A fraction of the plastic matrix strain is transferred
to the composite which obtains an irreversible strain
εc,IR of:

εc,IR = εm,pl · Em · (1 − vf)

vf · Ef + (1 − vf) · Em
= 0.122% (10)

10. The residual stresses after pre-straining are:

σ ′
m,z = σm,z − εm,pl · Em + εc,IR · Em = 66 MPa (11)

and

σ ′
f,z = σf,z + εc,irr · Ef = −103 MPa (12)

A reduction of the residual stresses of about 83% com-
pared to the “as processed” condition is obvious.
11. Repeating the loading of the composite in the same

way as in the previous case with a stress amplitude of
σa = 550 MPa leads to a maximum matrix stress of:

σ ′
m,max = Em ·

[
ε′

m,z + σa

Ef · vf + Em · (1 − vf)

]

= 350 MPa (13)

The minimum matrix stress is:

σ ′
m,min = Em ·

[
ε′

m,z − σa

Ef · vf + Em · (1 − vf)

]

= −219 MPa (14)

The maximum matrix stress is nearly 50% lower com-
pared to the first case. Since this value is significant be-
low the endurance limit of the matrix material, which
is of the order of 550 MPa, an infinite life time can be
expected at the given load.
12. The corresponding fibre stresses are:

σ ′
f,max = Ef ·

[
ε′

f,z + σa

Ef · vf + Em · (1 − vf)

]

= 845 MPa (15)

and

σ ′
f,min = Ef ·

[
ε′

f,z − σa

Ef · vf + Em · (1 − vf)

]

= −1051 MPa (16)
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As desired and expected, now the fibres carry a higher
load and the local load ratio of the constituents is closer
to the applied load ratio.

If creeping of the matrix is included, the irreversible
fraction needs to be added in step 8 to the plastic strain.
A further reduction of residual stresses can be reached
by this.

3. Model to analyse residual
stress modification

To optimise post-processing treatments and to consider
more complex mechanisms, as in the analysis above, a
suitable model is needed. Finite element analysis would
be possible but is too time and cost consuming for an
optimisation cycle in parallel to the experiments. Fur-
thermore, it is hard to distinguish the influence of dif-
ferent material parameters. Mathematical models are
often very complex and difficult to apply to certain
load cases. Rheological models consisting of spring,
damper and slider may be the basis to develop models
in a comprehensive and graphical way [9]. Each ele-
ment of the model can be described by a physical law.
The data for each element can be obtained from experi-
ments addressing the special behaviour of the element.
The suitable arrangement of the rheological elements to
the complete model can be used to describe the combi-
nation of different mechanisms and even different ma-
terials, e.g., TMCs.

Fig. 4 shows the arrangement of elements to the rheo-
logical model for a continuous fibre reinforced metallic
material under longitudinal loading. Fibre and matrix
are connected in parallel such that they experience the
same strain in fibre direction. Corresponding to the rule
of mixture the stress is partitioned by the respective vol-
ume contents:

σ = vf · ε · Ef + (1 − vf) · (ε − εpl,m − εcr,m) · Em (17)

Due to its fully elastic behaviour the fibres are subjected
to elastic strain only while the matrix strain contains
irreversible portions.

In order to describe fracture of the constituents a frac-
ture element is introduced. Below the fracture strength
this element shows no response, thus it has an infinite
stiffness. Exceeding the fracture strength leads to a stiff-
ness of zero and any load is transferred to connected el-
ements in parallel; if any exists. Otherwise total failure
occurs. The fracture strength, especially that of the ma-

Figure 4 Modular set-up of the rheological model for continuous fibre
reinforced MMCs under longitudinal loading.

trix, is a function of temperature and the loading mode,
e.g., cyclic or static. Similar to the matrix strength,
any element of the rheological model represents a
mathematical function which is linear only in the most
trivial case.

3.1. Modules of the model
The fibre is described by its strength and modulus, both
of which are mainly temperature dependent. In this ap-
proach plasticity, creep and cycle dependent behaviour
is assumed irrelevant in the case of ceramic fibres. Fur-
thermore, statistical aspects of the fibre properties are
neglected; thus the mean property value is used in the
computations.

The matrix behaviour is more complex. The strength
is not only temperature dependent; it further depends
on the number of applied load cycles and the load ratio.
The strain-based approach for fatigue recommends the
Coffin-Manson relationship [9, 20–22] to describe the
cycle dependent strength under fully reversed loading:

εa,m = σ ′
f,m

Em
· (2N )B + ε′

f,m · (2N )C (18)

A suitable stress-strain relationship will be used to
transfer the obtained strain into strength. Differences
in the cyclic and static stress-strain response are ne-
glected. The Smith-Watson-Topper-Equation [9] can be
used to fit the results if load ratios other than R = −1
are present:

σmax = σa,R=−1√
1−R

2

(19)

Since Equation 17 has shown an overestimation of the
R-influence it shall be modified in such a manner that
the correction influences just the difference between
static and cyclic strength:

σmax = σ2 −
√

1 − R

2
· (σ2 − σa,R=−1) (20)

A power law creep behaviour [9, 23] of the matrix may
be considered:

εcr,m = A · σ a
m · tb (21)

Some alloys used for TMCs as matrix material show
significant creep rates not only at elevated temperatures
but also at room temperature [24, 25]; its consideration
depends on the loading conditions.

The plastic behaviour of the matrix material is
strongly dependent on the metal alloy used and its mi-
crostructure. To describe this behaviour, different yield
functions are suitable. Approaches such as the linear
hardening may be used easily to describe the stress-
strain behaviour:

ε(σ ) =




σ

E

∣∣∣∣0 ≤ σ ≤ σ1

σ

E
+ σ

H

∣∣∣∣σ > σ1

(22)
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To prevent unrealistically high levels of stress un-
der high strains it was decided to limit the stress by
a maximum value σ2. Matrix materials showing a soft
transition from elastic to an ideal plastic yield regime
may be described more accurately by the hyperbolic
function [15, 26]:

σ (ε) =




E · ε

∣∣∣∣0 ≤ ε ≤ σ1

E

σ1 + (σ2 − σ1) · tanh

(
E · ε − σ1

σ2 − σ1

)∣∣∣∣ε >
σ1

E

(23)

The suitability of a yield function eventually depends
on the matrix alloy and its microstructure. Independent
of the yield function used, the plastic strain of the matrix
is:

εpl,m = ε − σm

Em
(24)

Metallic alloys show the well known Bauschinger Ef-
fect [9, 27]. For instance, if a ductile material is de-
formed plastically under tension loading the elastic
limit is shifted towards higher levels on further tension
loading. Simultaneously the elastic limit under com-
pression loading is reduced. This behaviour must be
included in the model to analyse repeated loading cor-
rectly. The Young’s modulus of the matrix is tempera-
ture dependent only. It can be described by any linear
or power law.

Before using the model to evaluate the failure of
TMCs some more aspects must be considered. These
are thermal residual stresses, the load partitioning in
the constituents and the influence of irreversible strains
on the stress state.

3.2. Thermal residual stresses
TMCs are processed at higher temperatures than ambi-
ent temperature, and thermal residual stresses (TRS) are
induced due to the mismatch of the coefficients of ther-
mal expansion of the constituents. Equations to deter-
mine the stress components along the fibre axes, which
are relevant in the case of longitudinal loading, have
been used in Section 2.2 already (Equations 1 and 2).
A fully elastic calculation can be performed if a refer-
ence temperature is considered at which the composite
is assumed to be stress free [28, 29]. The stress state
due to TRS is the starting condition for computation of
the subsequent loading.

3.3. Stress partitioning in fibre and matrix
For failure analysis the partitioning of the applied stress
in fibre and matrix is required to determine the weakest
link in the composite. The balance condition requires:

σ = vf · σf + (1 − vf) · σm (25)

To fulfil this condition thermal residual stresses and any
strain fractions of the constituents must be considered.
The assumption of fully elastic behaviour of the fibres

enables determination of the fibre stress depending on
the overall strain ε by:

σf = Ef · ε + σZ,f (26)

The presence of plastic and creep strains of the matrix
leads to:

σm = Em · (ε − εpl,m − εcr,m) + σZ,m (27)

Thus the stress partitioning not only depends on the
Young’s modulus of the constituents but also on the
irreversible strains of the matrix.

3.4. Influence of irreversible matrix strains
If loading causes creep or plastic strains of the matrix,
the state of residual stresses after unloading is altered.
A fraction of the stress is transferred from the matrix
onto the fibres. This is considered in the following anal-
ysis of loading since the stress partitioning depends on
residual stresses as shown in Equations 26 and 27. The
irreversible strain of the matrix is:

εIR,m = εpl,m + εcr,m (28)

The relations to re-compute the altered stress state are
presented in Section 2.2 as Equations 9–12.

3.5. Determination of life time
This section describes the application of the model
to evaluate the Wöhler curve of the TMC. A con-
stant strain amplitude and frequency at a load ra-
tio of R = −1 (tension-compression) is assumed. The
constituent stresses for each load cycle can be deter-
mined iteratively as shown before. A comparison of
the temperature- and cycle-dependent strength of the
fibre and the matrix enables determination of failed con-
stituents. Here, failure of one constituent is defined as
total failure of the TMC.

Since thermal residual stresses are taken into ac-
count, the load ratio R of the constituents is not the
same as the applied. In the special case of an applied
load ratio of R = −1 the mean stress of the constituents
is equal to the residual stress. Thus the maximum stress
of the matrix is:

σmax,m = f (σm(εa + εZ,m)) (29)

The stress-strain relationship σm(ε) (Equation 22 or 23)
is used to consider the yield behaviour. Consequently
the load ratio of the matrix is:

R = εZ,m − εa

εZ,m + εa
(30)

To consider the influence of the frequency a rectangular
shaped cyclic loading is assumed. Thus the maximum
loading is present in one half of the time while the mini-
mum loading in the other half. This leads to a reduction
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Figure 5 Algorithm to determine the Wöhler curve by the rheological
model.

of the matrix stress due to creep of:

�σmax,m = −Em · f

(
εcr,m

(
σmax,m,

1

2 · f

))
. (31)

In connection with

εIR,m = (εa + εZ,m) − f (σm(εa + εZ,m))

Em

+ f

(
εcr,m

(
σmax,m,

1

2 · f

))
(32)

and the procedure described in Section 2.2 the actual
state of residual stresses can be determined. In the same
way the stress state after loading under minimum load
is determined. Starting with maximum load for the first
cycle, which is the ultimate tensile strength (UTS) de-
termined by the rule of mixtures, followed by a succes-
sive decrease enables the determination of the number
of cycles to failure when the strength of one constituent
is exceeded. This is cycle-dependent for the matrix and
constant for the fibres. However, due to the load trans-
fer by creep and yielding a cycle-dependent fibre failure
may occur. Fig. 5 summarises the algorithm to deter-
mine the Wöhler curve.

4. Comparison of model and experiments
To demonstrate the usage of the model, it has been ap-
plied to a TMC which is a continuously silicon-carbide
fibre reinforced near-α-titanium alloy, SCS-6/Ti-6Al-
2Sn-4Zr-2Mo. The input properties are shown in Fig. 6.
Following the procedure described above and via the al-
gorithm shown in Fig. 5 the Wöhler curves of the com-
posite are determined. Computation was done using a
spreadsheet software. The result is shown in Fig. 7 along
with some experiments data and the calculated strength

Figure 6 Input properties used in the analysis by the rheological model.

Figure 7 Wöhler curve of SCS-6/Ti-6Al-2Sn-4Zr-2Mo determined by
the rheological model in comparison with experimental results obtained
from SCS-6/Ti-6Al-2Sn-4Zr-2Mo (circles) [19] and SCS-6/Ti-6Al-4V
(X) composites [31].

of the unreinforced matrix material by Equations 18
and 23 as reference. This curve contains distinct points
which mark different effects. The first drop of the curve
of the composite (1) is due to an elimination of thermal
residual stresses during the first cycle by yielding. It
happens only in this special load case which considers
a constant strain amplitude and a constant mean stress
of zero. Thus the mean strain increases corresponding
to the irreversible strain εIR,c. After the second cycle the
strength of the composite (2) as well as that of the un-
reinforced matrix (3) are nearly constant until approx-
imately 1000 cycles. In this regime the strength of the
composite is limited by the rupture strain of the fibres
while the constant level of the strength of the matrix is
due to the nearly ideal elastic-plastic behaviour of the
titanium alloy; displaying the strain amplitude would
show a significant decrease. In point (4) the curve for
the composite shows a sudden drop which marks the
transition from fibre- to matrix-induced failure. The
strength of the matrix decreases simultaneously (5).
At a very high number of cycles the strength of the
composite drops even below that of the unreinforced
material (6). This is caused by thermal residual stresses
which are tensile in the matrix leading to premature
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Figure 8 Effect of pre-straining as post-processing treatment on the fa-
tigue behaviour of SCS-6/Ti-6Al-2Sn-4Zr-2Mo (results of model and
experiments [19]).

crack initiation as described before. Such a behaviour
was confirmed by experimental evidence. Experimental
data is found in a region parallel to but somewhat be-
low the predicted curve. The lower strength measured
than predicted may be due to inhomogeneities in the
material [10] as well as due to scatter of the properties
of the constituents and the fibre volume content. Fur-
thermore, the influence of multi-axial stresses induced
by the three-dimensional nature of the residual stresses
is neglected in the calculations. Thus the prediction re-
veals an upper limit for an ideal and defect free com-
posite. Additionally, results of tests on SCS-6/Ti-6Al-
4V are similar since the properties of Ti-6Al-4V are
comparable with those of Ti-6Al-2Sn-4Zr-2Mo at room
temperature.

In a second step the post-processing pre-straining
procedure as described in Section 2.2 has been consid-
ered in the model as well as in the experiments. Fig. 8
shows the results. An improvement of about 30–40%
of the HCF strength is obvious. Further improvement
can be expected by optimisation of this treatment with
the aid of creep effects. An influence on other fatigue
regions (LCF and high temperature) by the TRS mod-
ification is not expected since this process induces ir-
reversible deformations in a short time which would
occur during the load history anyway. The UTS is re-
duced slightly due to reduced residual stresses by the
pre-straining procedure while an improvement in the
high cycle fatigue regime is obvious [30]. An elimina-
tion of the drop between the first and the second cy-
cle would mark the total relaxation of residual stresses
in fibre direction. Again the experimental results are
somewhat below the prediction.

5. Discussion
Components loaded at high loads or at elevated temper-
atures can be reinforced by TMCs in an effective way.
However, almost any component is running at low tem-
peratures and low loads, too; at least during the starting
process. In this case the composite is sensitive to matrix
cracking if the TRS are not released before operation.
The target is to develop a TMC which can be used in the
entire temperature range from below room temperature
up to 600◦C. Post-processing treatments are suitable

to modify the TRS in such a manner that the fatigue
behaviour in the HCF regime at room temperature is
improved drastically.

The presented model makes the optimisation pro-
cess of the material easier and accelerates the develop-
ment of suitable post-processing treatments. The lower
strength measured than predicted may be due to inho-
mogeneities in the material as well as scatter of the
properties of the constituents and the fibre volume con-
tent. Furthermore the influence of multi-axial stresses
induced by the three-dimensional nature of the resid-
ual stresses is neglected. Thus the prediction reveals
an upper limit for an ideal and defect free compos-
ite. Further reasons may be found in the microstruc-
ture of the matrix material which is totally different
to unreinforced titanium alloys due to the influence
of the magnetron sputtering process for the TMC pro-
cessing. However, up to date there are no data for the
sputtered titanium alloy which are suitable to create a
matrix model. Nevertheless the tendency is obvious.
Experiments to characterise the matrix material in a
“composite-like” condition are planned to improve the
input data.

6. Conclusions
The fatigue behaviour of TMCs differs significantly
from that of monolithic metals. Therefore, a model to
predict and optimise the fatigue behaviour has been
developed which takes these differences into account.
The following conclusions highlight distinct points of
the model and its application.

• A suitable model for life time prediction of TMCs
has to consider thermal residual stresses as well
as the influence of irreversible matrix strains on
residual stresses.

• A rheological model is developed which is suitable
to predict the fatigue behaviour of TMCs under
consideration of post-processing treatments.

• The modular set-up of the rheological model allows
separate determination of specific properties of the
constituents as input data and enables the detection
of weak points of the composite.

• A modification of thermal residual stresses before
HCF loading at room temperature improves the
HCF strength substantially. Such a modification of
thermal residual stresses can be reached by pre-
straining of the composite.

• Under tension-tension loading matrix cracks may
be bridged by intact fibres while fully reversed
loading leads to rapid fibre failure inducing to-
tal failure. Thus the failure criterion assuming that
failure of one constituent means composite failure
is more accurate for fully reversed loading.
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